Answer on Question 65305, Physics, Other

Question:

Assuming the train travels along a straight track at $80 \mathrm{~m} / \mathrm{s}$ for 1000 m and then travels at $50 \mathrm{~m} / \mathrm{s}$ for the next 1000 m . What is the average velocity of the train?

Solution:

By the definition, the average velocity is the total distance traveled divided by the total time:

$$
v_{a v g}=\frac{d_{t o t}}{t_{t o t}} .
$$

It is obvious that the total distance is equal to

$$
d_{t o t}=d_{1}+d_{2}=1000 m+1000 m=2000 m
$$

Let's first find the time that the train needs to travel 1000 m at $80 \mathrm{~m} / \mathrm{s}$:

$$
t_{1}=\frac{d_{1}}{v_{1}}=\frac{1000 \mathrm{~m}}{80 \frac{\mathrm{~m}}{\mathrm{~s}}}=12.5 \mathrm{~s}
$$

Similarly, we can find the time that the train needs to travel the next 1000 m at $50 \mathrm{~m} / \mathrm{s}$:

$$
t_{2}=\frac{d_{2}}{v_{2}}=\frac{1000 \mathrm{~m}}{50 \frac{\mathrm{~m}}{\mathrm{~s}}}=20 \mathrm{~s}
$$

Then, we can find the total time for the train's trip:

$$
t_{t o t}=t_{1}+t_{2}=12.5 \mathrm{~s}+20 \mathrm{~s}=32.5 \mathrm{~s} .
$$

Finally, we can find the average velocity of the train:

$$
v_{a v g}=\frac{d_{t o t}}{t_{t o t}}=\frac{2000 \mathrm{~m}}{32.5 \mathrm{~s}}=61.5 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer: $v_{\text {avg }}=61.5 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Answer provided by https://www.AssignmentExpert.com

