Answer on Question \#65281-Physics-Other

The figure below shows a thin rod with a uniform charge density of $2.10 \mu \mathrm{C} / \mathrm{m}$. Evaluate the electric potential at point P if $\mathrm{d}=\mathrm{D}=\mathrm{L} / 4.00$. Assume that the potential is zero at infinity.

Solution

For an infinitesimal segment of the rod the potential at $P=P_{1}$ is

$$
d V=\frac{k d q}{d+x}=\frac{k \lambda d x}{d+x}
$$

The electric potential at point $P=P_{1}$ is

$$
\begin{aligned}
V=\int_{0}^{L} d V=\int_{0}^{L} & \frac{k \lambda d x}{d+x}=k \lambda \ln (d+x)_{0}^{L}=k \lambda[\ln (L+d)-\ln (d)] \\
& =k \lambda \ln \left(1+\frac{L}{d}\right)=\left(8.99 \cdot 10^{9}\right)\left(2.10 \cdot 10^{-6}\right) \ln \left(1+\frac{1}{4}\right)=4.21 \mathrm{kV}
\end{aligned}
$$

Answer: 4. 21 kV .

Answer provided by https://www.AssignmentExpert.com

