Question \#65279, Physics / Mechanics | Relativity

A car driver travelling at $90 \mathrm{~km} / \mathrm{h}$, notices that he is heading directly to a cliff when he is 20 m away from the edge. He applies the brakes and experiences a backward acceleration of $8.0 \mathrm{~m} / \mathrm{s} 2$, but it's not enough. The car goes off the cliff, if the cliff is 12 m high, how far is the car traveling horizontally until it lands?
$v_{0}=90 \frac{\mathrm{~km}}{\mathrm{~h}}=25 \frac{\mathrm{~m}}{\mathrm{~s}}$
$s=20 m$
$a=8 \mathrm{~m} / \mathrm{s}^{2}$
$h=12 m$
$x=$?

The answer to the question.

Equations of uniformly accelerated motion:
$\left\{\begin{array}{c}v=v_{0}-a t \\ s=v_{0} t-\frac{a t^{2}}{2} ;\end{array}\right.$
We find the movement time:
$\frac{a t^{2}}{2}-v_{0} t+s=0$
$\frac{8 t^{2}}{2}-25 t+20=0$
$4 t^{2}-25 t+20=0$
$t=\frac{25-17.5}{8}=0.9 s ;$
The second root of the equation does not satisfy the condition of the problem.
$v=25-7.5=17.5 \frac{\mathrm{~m}}{\mathrm{~s}}$;
Consider the uniformly accelerated drop h.
$h=\frac{g t_{1}{ }^{2}}{2} ;$ hence $t_{1}=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{24 \mathrm{~m}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}=1.6 \mathrm{~s}$
$x=v \quad t=17.5 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1.6 \mathrm{~s}=27.4 \mathrm{~m}$

Answer: the car traveling horizontally until it lands $x=27.4 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

