Answer on Question #65231, Physics / Optics

Two energy levels of an atomic system are separated by energy corresponding to frequency 3.0×10^{14} Hz. Assume that all atoms are in one or the other of these two energy levels, compute the fraction of atoms in the upper energy level at temperature 400 K. Take k = 1.38×10^{-23} JK-1 and h = 6.6×10^{-34} Js.

Find:
$$\frac{N_2}{N_1} - ?$$

Given:

 $\Delta \upsilon$ =3.0 × 10¹⁴ Hz

Т=400 К

k=1.38×10⁻²³J×K⁻¹

h=6.6×10⁻³⁴J×s

Solution:

Boltzmann factor:

$$\frac{N_2}{N_1} = \exp^{-\frac{E_1 - E_2}{kT}}$$
 (1), where level 2 (N₂) is higher than level 1 (N₁)

Energy difference:

$$\begin{split} E_1 - E_2 &= h\Delta \upsilon \text{ (2)} \\ \text{(2) in (1): } \frac{N_2}{N_1} &= \exp^{-\frac{h\Delta \upsilon}{kT}} \text{ (3)} \\ \text{Of (3)} &\Rightarrow \frac{N_2}{N_1} &= \exp^{-\frac{6.6 \times 10^{-34} \times 3.0 \times 10^{14}}{1.38 \times 10^{-23} \times 400}} &= \exp^{-35.9} \approx 0 \end{split}$$