Answer on Question #65229-Physics-Other

An electron (mass $9.1 \times 10^{-31} \text{kg}$) is projected between the plates of an oscilloscope (length of $3.8 \times 10^{-2} \text{m}$) with an initial velocity of 1.8×10^{7} m/s parallel to the plates. Then uniform electric field between the plates is 2.0×10^{4} N/C upward.

- a. What is the acceleration (magnitude and direction) of the electron between the plates?
- b. How long does it take to go through the plates?
- c. How far has it dropped or risen (specify which) when it leaves the plates.

Solution

a.

$$ma = eU$$

$$a = \frac{eU}{m} = \frac{(1.6 \cdot 10^{-19})(2.0 \cdot 10^4)}{(9.1 \cdot 10^{-31})} = 3.5 \cdot 10^{15} \frac{m}{s^2}.$$

b.

$$t = \frac{d}{v_x} = \frac{3.8 \cdot 10^{-2}}{1.8 \cdot 10^7} = 2.1 \cdot 10^{-9} s$$

c. . Then uniform electric field between the plates is upward. Thus, the electron has dropped.

$$h = \frac{at^2}{2} = \frac{(3.5 \cdot 10^{15})(2.1 \cdot 10^{-9})^2}{2} = 7.7 \cdot 10^{-3} m.$$

Answer provided by https://www.AssignmentExpert.com