Answer on Question \#65194, Physics / Optics

A plane light wave of wavelength 580 nm falls on a long narrow slit of width 0.5 mm . (i) Calculate the angles of diffraction for the first two minima. (ii) How are these angles influenced if the width of slit is changed to 0.2 mm ? (iii) If a convex lens of focal length 0.15 m is now placed after the slit, calculate the separation between the second minima on either side of the central maximum.

Solution:

The general condition for a minimum for a single slit is:

$$
m \lambda=a \sin \theta
$$

where $m=1,2,3,4$ and so on

- a is the width of the slit,
- θ is the angle of incidence at which the minimum intensity occurs, and
- λ is the wavelength of the light
(i)

The angle of diffraction for the first minimum:

$$
\theta_{1}=\sin ^{-1}\left(\frac{\lambda}{a}\right)=\sin ^{-1}\left(\frac{580 \times 10^{-9}}{0.5 \times 10^{-3}}\right)=\mathbf{0 . 0 6 6 5} 5^{\circ}
$$

The angle of diffraction for the second minimum:

$$
\theta_{1}=\sin ^{-1}\left(\frac{2 \lambda}{a}\right)=\sin ^{-1}\left(\frac{2 \times 580 \times 10^{-9}}{0.5 \times 10^{-3}}\right)=\mathbf{0 . 1 3 2 9}{ }^{\circ}
$$

(ii)

The angle of diffraction for the first minimum:

$$
\theta_{1}=\sin ^{-1}\left(\frac{\lambda}{a}\right)=\sin ^{-1}\left(\frac{580 \times 10^{-9}}{0.2 \times 10^{-3}}\right)=\mathbf{0 . 1 6 6 2} 2^{\circ}
$$

The angle of diffraction for the second minimum:

$$
\theta_{1}=\sin ^{-1}\left(\frac{2 \lambda}{a}\right)=\sin ^{-1}\left(\frac{2 \times 580 \times 10^{-9}}{0.2 \times 10^{-3}}\right)=\mathbf{0 . 3 3 2 3}{ }^{\circ}
$$

(iii) Distance of nth secondary minima from central maxima

$$
y_{n}=\frac{n \lambda f}{a}
$$

where f is focal length of converging lens.

$$
y_{2}=\frac{2 \times 580 \times 10^{-9} \times 0.15}{0.2 \times 10^{-3}}=0.87 \times 10^{-3} \mathrm{~m}
$$

Thus, the separation between the second minima on either side of the central maximum is

$$
\Delta y=2 y_{2}=\mathbf{1 . 7 4} \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{m}
$$

Answer provided by https://www.AssignmentExpert.com

