

Answer on Question #65192, Physics Mechanics Relativity

A mass is attached to a spring, displaced and then released from rest with an angular velocity of 0.5 rad/s. Determine the time when the kinetic energy and potential energy are first equal.

Solution:

In this situation, we have harmonic oscillations: $x(t) = x_{max} \cos(\omega t)$; (t=0; x=A-amplitude)

$$\omega - \text{angular velocity} = \frac{0.5 \text{ rad}}{\text{s}}$$

When kinetic energy and potential energy are equal: $E_{mech} = E_{pot1} + E_{kin1} = 2E_{pot1} = 2E_{kin1}$;

$E_{pot}(t) = \frac{\omega^2 x(t)^2}{2}$; According to law of conservation of energy:

$$E_{mech} = \text{const}; E_{mech} = 2E_{pot1} = E_{pot(max)} \Rightarrow 2 * \frac{\omega^2 x_1^2}{2} = \frac{\omega^2 x_{max}^2}{2} \Rightarrow 2 * x_1^2 = x_{max}^2$$

$$2 * (x_{max} \cos(\omega t))^2 = x_{max} \Rightarrow \cos(\omega t) = \frac{1}{\sqrt{2}}; \Rightarrow \omega t = \frac{\pi}{4}; t = \frac{\pi}{4\omega} = \frac{3.14}{4*0.5} = 1.57 \text{ s}$$

Answer: t=1.57s

Answer provided by <https://www.AssignmentExpert.com>