Answer on Question\#65152, Physics / Optics

Question

An object 10 cm in front of a concave mirror forms an image 5 cm behind the mirror. What is the focal length of the mirror?

Solution

Location of image behind a concave mirror implies that we have the case when object is between focal point and mirror (image magnified).

$$
\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}
$$

where f - focal length, d_{o} - object distance, d_{i} - image distance.
Accordingly to the sign convention used here, for concave mirror f should be positive, as well as d_{o}, while d_{i} can change sign: " + " if image real (in front of the mirror) and " - " if image virtual (behind the mirror).

Then, for given case:

$$
\frac{1}{f}=\frac{1}{10}-\frac{1}{5}=-\frac{1}{10} \rightarrow f=-10<0
$$

Contradiction. Thus, there is no possible solution.
Answer provided by https://www.AssignmentExpert.com

