Answer on Question \#65089-Physics-Mechanics-Relativity

A straight rod of length extends from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{L}$. The linear mass density of rod varies with x coordinate is $\lambda=a_{0}+b_{0} x^{2}$. The gravitational force experienced by a point mass m at $\mathrm{x}=-\mathrm{a}$, is

Solution

$$
d F=\frac{G m \lambda d x}{x^{2}}
$$

The gravitational force experienced by a point mass m at $\mathrm{x}=-\mathrm{a}$, is

$$
F=\int_{a}^{a+L} \frac{G m\left[a_{0}+b_{0} x^{2}\right] d x}{x^{2}}=a_{0} \int_{a}^{a+L} \frac{G m d x}{x^{2}}+b_{0} \int_{a}^{a+L} G m d x=G m\left[a_{0}\left(\frac{1}{a}-\frac{1}{a+L}\right)+b_{0} L\right] .
$$

Answer: $\operatorname{Gm}\left[a_{0}\left(\frac{1}{a}-\frac{1}{a+L}\right)+b_{0} L\right]$.

Answer provided by https://www.AssignmentExpert.com

