Answer on Question \#64991, Physics / Other

You drive $109 \mathrm{~km} / \mathrm{h}$ east for 31 min , then $82 \mathrm{~km} / \mathrm{h}$ north for 42 min . Let the +x -axis point east and the +y -axis north. Find your average velocity for the entire trip.

Enter the x and y components of the velocity separated by a comma.

Solution:

Given:
$v_{1}=190 \mathrm{~km} / \mathrm{h}$,
$v_{2}=82 \mathrm{~km} / \mathrm{h}$,
$t_{1}=31 \mathrm{~min}=\frac{31}{60}$ hour,
$t_{2}=42 \mathrm{~min}=\frac{42}{60}$ hour,

Velocity is a vector quantity, and average velocity can be defined as the displacement divided by the time.

$$
v=\frac{d}{t_{1}+t_{2}}
$$

The displacement is

$$
d=\sqrt{d_{1}^{2}+d_{2}^{2}}=\sqrt{\left(v_{1} t_{1}\right)^{2}+\left(v_{2} t_{2}\right)^{2}}=\sqrt{\left(109 \cdot \frac{31}{60}\right)^{2}+\left(82 \cdot \frac{42}{60}\right)^{2}}=80.41 \mathrm{~km}
$$

Thus,

$$
v=\frac{80.41}{\frac{31}{60}+\frac{42}{60}}=66.09 \mathrm{~km} / \mathrm{h} \approx 66.1 \mathrm{~km} / \mathrm{h}
$$

The x and y components of the velocity is

$$
\begin{gathered}
v_{x}=v \cos \theta=v \frac{d_{1}}{d}=66.09 \cdot \frac{109 \cdot \frac{31}{60}}{80.41}=46.29 \mathrm{~km} / \mathrm{h} \approx 46.3 \mathrm{~km} / \mathrm{h} \\
v_{y}=v \sin \theta=\frac{d_{2}}{d}=66.09 \cdot \frac{82 \cdot \frac{42}{60}}{80.41}=47.18 \mathrm{~km} / \mathrm{h} \approx 47.2 \mathrm{~km} / \mathrm{h}
\end{gathered}
$$

Answer: $v=66.1 \mathrm{~km} / \mathrm{h} ; v_{x}=46.3 \mathrm{~km} / \mathrm{h}, v_{y}=47.2 \mathrm{~km} / \mathrm{h}$.

