Answer on Question \#64978-Physics-Other

Calculate the ratio of change in mass of the molecules of a gas to the initial mass, if it's speed is speed is reduced to half and the ratio of initial and final pressure is 3:4

Answer is 13:3

Solution

From kinetic theory of gases:

$$
\begin{gathered}
p V \sim \frac{m v^{2}}{2} \\
\frac{p^{\prime} V}{p V}=\frac{m^{\prime} v^{\prime 2}}{m v^{2}}
\end{gathered}
$$

Thus,

$$
\frac{m^{\prime}}{m}=\frac{p^{\prime}}{p}\left(\frac{v}{v^{\prime}}\right)^{2}=\frac{4}{3}\left(\frac{1}{\frac{1}{2}}\right)^{2}=\frac{16}{3}
$$

The ratio of change in mass of the molecules of a gas to the initial mass is

$$
\frac{\Delta m}{m}=\frac{m^{\prime}-m}{m}=\frac{m^{\prime}}{m}-1=\frac{16}{3}-1=\frac{13}{3}
$$

Answer: $\frac{13}{3}$.
Answer provided by https://www.AssignmentExpert.com

