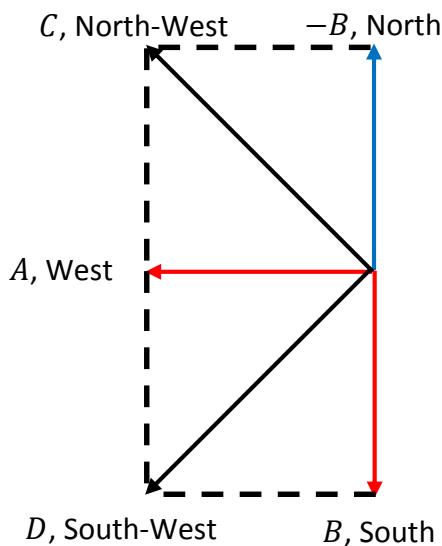


Answer on Question#64970, Physics / Molecular Physics | Thermodynamics


$$A + B, \quad 63\sqrt{2} \text{ units,} \quad \text{south - west}$$

$$A - B, \quad 63\sqrt{2} \text{ units,} \quad \text{north - west}$$

Question

Vector A has a magnitude of 63 units and points due west, while vector B has the same magnitude and points due south. Find the magnitude and direction of $A + B$ and $A - B$.

Solution

$$C = A - B, \quad D = A + B$$

C points due north-west and D points due south-west, which can be clearly seen on the picture above. It follows from directions of A and B , and from equality of their magnitudes.

In order to find magnitudes of C and D we use Pythagorean theorem:

$$|C| = |D| = \sqrt{|A|^2 + |\pm B|^2}$$

$$|A| = |+B| = |-B| = 63$$

$$|C| = |D| = \sqrt{63^2 + 63^2} = 63\sqrt{2} \text{ (units)}$$

Answer provided by <https://www.AssignmentExpert.com>