Answer on Question \#64945, Physics | Mechanics Relativity

Question: At the equator, the radius of the Earth is approximately 6370 km . A jet flies at a very low altitude at a constant speed of $v=282 \mathrm{~m} / \mathrm{s}$. Upon landing, the jet can produce an average deceleration of $\mathrm{a}=19.5 \mathrm{~m} / \mathrm{s} 2$.
a) How long will it take the jet, in seconds, to circle the earth at the equator?
b) What is the numeric value for the minimum landing distance, d (in meters), this jet needs to come to rest?

Solution:

R=6370km=6370*1000m;
$\mathrm{v}=282 \mathrm{~m} / \mathrm{s}$;
$a_{\max }=19.5 \mathrm{~m} / \mathrm{s} ;$
a) $L=2 \pi R ; t=\frac{L}{v}=\frac{2 * 3.1416 * 6370 * 1000}{282}=141929 \mathrm{~s}=1.42 * 10^{5} \mathrm{~s}$
b) $S_{\text {min }}=\frac{v^{2}}{2 * a_{\max }}=\frac{282^{2}}{2 * 19.5}=2039.1 \mathrm{~m}=2.039 \mathrm{~km}$

Answer:
a) $1.42 * 10^{5} s$
b) $2039.1 \mathrm{~m}=2.039 \mathrm{~km}$

Answer provided by https://www.AssignmentExpert.com

