Answer on Question #64945, Physics | Mechanics Relativity

Question: At the equator, the radius of the Earth is approximately 6370 km. A jet flies at a very low altitude at a constant speed of \(v = 282 \) m/s. Upon landing, the jet can produce an average deceleration of \(a = 19.5 \) m/s².

a) How long will it take the jet, in seconds, to circle the earth at the equator?

b) What is the numeric value for the minimum landing distance, \(d \) (in meters), this jet needs to come to rest?

Solution:

\[
\begin{align*}
R &= 6370 \text{ km} = 6370 \times 1000 \text{ m}; \\
v &= 282 \text{ m/s}; \\
a_{\text{max}} &= 19.5 \text{ m/s}^2;
\end{align*}
\]

a) \(L = 2\pi R; \quad t = \frac{L}{v} = \frac{2 \times 3.1416 \times 6370 \times 1000}{282} = 141929 \text{ s} = 1.42 \times 10^5 \text{ s} \)

b) \(S_{\text{min}} = \frac{v^2}{2a_{\text{max}}} = \frac{282^2}{2 \times 19.5} = 2039.1 \text{ m} = 2.039 \text{ km} \)

Answer:

a) \(1.42 \times 10^5 \text{ s} \)

b) \(2039.1 \text{ m} = 2.039 \text{ km} \)

Answer provided by https://www.AssignmentExpert.com