Answer on Question \#64912-Physics-Other

Part (a) of the figure below shows two charged particles fixed in place on an x axis with separation L. The ratio $q 1 / q 2$ of their charge magnitudes is 36.0. Part (b) of the figure shows the x component Enet, x of their net electric field along the x axis just to the right of particle 2 . The x axis scale is set by $\mathrm{xs}=30.0 \mathrm{~cm}$.
(a) At what value of $x>0$ is Enet, x maximum? (The maximum is not at $x=x s$.)cm
(b) If particle 2 has charge $-q 2=-3 e$, what is the value of that maximum?

(a)

(b)

Solution

The electric field from a point charge q is

$$
\begin{gathered}
E=k \cdot\left(\frac{q}{r^{2}}\right) \cdot e_{r} \\
k=8.988 \cdot 10^{9} \frac{N m^{2}}{C^{2}} \\
E_{1}=\frac{k q_{1}}{(x-(-L))^{2}}=\frac{k q_{1}}{(x+L)^{2}} \\
E_{2}=-\frac{k q_{2}}{(x-0)^{2}}=-\frac{k q_{2}}{x^{2}}
\end{gathered}
$$

The total electrical field is

$$
E_{n e t, x}=E_{1}+E_{2}=\frac{k q_{1}}{(x+L)^{2}}-\frac{k q_{2}}{x^{2}}=k q_{2}\left(\frac{36}{(x+L)^{2}}-\frac{1}{x^{2}}\right)
$$

From the sketch (b) the electrical field at $x=\frac{2}{3} x_{s}=\frac{2}{3} 30=20 \mathrm{~cm}=0.2 \mathrm{~m}$ is zero.

$$
\begin{gathered}
E_{n e t, x}=0=k q_{2}\left(\frac{36}{(0.2+L)^{2}}-\frac{1}{0.2^{2}}\right) \\
\frac{36}{(0.2+L)^{2}}=\frac{1}{0.2^{2}} \\
L=1 \mathrm{~m}
\end{gathered}
$$

(a) For maximum:

$$
\begin{gathered}
\frac{d E_{n e t, x}}{d x}=0 \\
\frac{d}{d x}\left[k q_{2}\left(\frac{36}{(x+1)^{2}}-\frac{1}{x^{2}}\right)\right]=2\left(\frac{1}{x^{3}}-\frac{54}{(x+1)^{3}}\right)=0 \\
\frac{1}{x^{3}}=\frac{54}{(x+1)^{3}} \\
\frac{x+1}{x}=\sqrt[3]{54} \\
x_{\max }=\frac{1}{\sqrt[3]{54}-1}=0.360 \mathrm{~m}
\end{gathered}
$$

(b)

$$
\begin{aligned}
\mathrm{E}_{\text {net,max }}=k q_{2} & \left(\frac{36}{(x+1)^{2}}-\frac{1}{x^{2}}\right)=8.988 \cdot 10^{9} \cdot 3 \cdot 1.602 \cdot 10^{-19}\left(\frac{36}{(0.360+1)^{2}}-\frac{1}{0.360^{2}}\right) \\
& =5.07 \cdot 10^{-8} \frac{V}{\mathrm{~m}} .
\end{aligned}
$$

Answer provided by https://www.AssignmentExpert.com

