

Answer on Question #64821, Physics / Other

1) a football team plans for a field goal from the 45m line. crossbar is 3m above and it must clear it to be counted. he strikes it off the ground at a velocity of 25m/s (30°)

- A) will it clear the crossbar, explain?
- B) what was the velocity when it pasts the post?

Solution:

Neglecting air resistance, the projectile is subject to a constant acceleration $g=9.81 \text{ m/s}^2$, due to gravity, which is directed vertically downwards.

We use x-y coordinates with origin at the release point.

A)

For x coordinate:

$$\begin{aligned} x &= x_0 + (v_x)_0 t \\ 45 &= 0 + (25 \cos 30^\circ) t \end{aligned}$$

We now find the flight time

$$t = \frac{45}{25 \cos 30^\circ} = 2.078 \text{ s}$$

For y coordinate:

$$\begin{aligned} y &= y_0 + (v_y)_0 t - \frac{1}{2} g t^2 \\ y &= 0 + (25 \sin 30^\circ) \times 2.078 - \frac{9.81}{2} (2.078)^2 = 4.8 \text{ m} \end{aligned}$$

The ball will clear the crossbar, because $y > h$.

B)

The kinematic equation that describes an object's motion in vertical direction is:

$$v_y = v_{0y} - gt = (25 \sin 30^\circ) - 9.81 \cdot 2.078 = -7.9 \text{ m/s}$$

The horizontal component of velocity is $25 \cos 30^\circ = 21.65 \text{ m/s}$ and the vertical component of velocity is -7.9 m/s .

The final speed is

$$v_f = \sqrt{v_x^2 + v_y^2} = \sqrt{21.65^2 + 7.9^2} \approx 23.0 \text{ m/s}$$

Answer: A) The ball will clear the crossbar, because $4.8 \text{ m} > 3 \text{ m}$;
B) 23.0 m/s.

Answer provided by <https://www.AssignmentExpert.com>