Answer on Question\#64786, Physics / Molecular Physics | Thermodynamics

Question

How much Ice at $0^{\circ} \mathrm{C}$ must be mixed with 50.0 g of water at $75.0^{\circ} \mathrm{C}$ to give a final water temperature of $20^{\circ} \mathrm{C}$?

Solution

Denote mass of ice as M, mass of water as m, energy required to melt $1 g$ of ice at $0^{\circ} C$ as Q, energy required to heat up 1 g of water by $1^{\circ} \mathrm{C}($ or 1 K$)$ as q, initial temperature of water as t_{1}, initial temperature of ice as $t_{0} \equiv 0$ and final temperature as t_{2}.

Then,

$$
\begin{gathered}
M Q+M q\left(t_{2}-t_{0}\right)=m q\left(t_{1}-t_{2}\right) \\
M=\frac{m q\left(t_{1}-t_{2}\right)}{Q+q\left(t_{2}-t_{0}\right)}=\frac{m q\left(t_{1}-t_{2}\right)}{Q+q t_{2}} \\
Q=335 \frac{\mathrm{~kJ}}{\mathrm{~kg}}, \quad q=4.2 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
M=\frac{50 \cdot 4.2 \cdot(75-20)}{335+4.2 \cdot 20}=\frac{11550}{419} \approx 27.57 \mathrm{~g}
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

