Answer on Question \#64729, Physics / Mechanics | Relativity

A sphere of diameter D, moving at speed v in air, experiences a quadratic drag force given approximately by $F_{D}=\left(0.25 \mathrm{Ns}^{2} / \mathrm{m}^{4}\right) \mathrm{D}^{2} \mathrm{v}^{2}$, for diameters of few centimetres or more, and speeds of a metre per second or more. Calculate the terminal velocity of a basketball (25 cm diameter, mass 1 kg), and of a grapefruit 10 cm in diameter (assume a density of $1000 \mathrm{~kg} / \mathrm{m} 3$ for the grapefruit).

Solution:

An object falling through the air will reach a terminal velocity when the drag force is equal to the weight:

$$
F_{n e t}=m g-F_{D}=0
$$

So,

$$
m g=0.25 D^{2} v^{2}
$$

The terminal velocity from given can be expressed by

$$
v_{t}=\sqrt{\frac{m g}{0.25 D^{2}}}=\frac{2}{D} \sqrt{m g}
$$

For a basketball

$$
v_{t}=\frac{2}{0.25 \mathrm{~m}} \sqrt{1 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}}=25.0 \mathrm{~m} / \mathrm{s}
$$

For a grapefruit

$$
\begin{gathered}
m=\rho V=\rho \frac{4}{3} \pi r^{3}=(1000) \frac{4}{3} \pi(0.05)^{3}=0.524 \mathrm{~kg} \\
v_{t}=\frac{2}{0.10 \mathrm{~m}} \sqrt{0.524 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}}=45.8 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer: $25.0 \mathrm{~m} / \mathrm{s} ; 45.8 \mathrm{~m} / \mathrm{s}$.
Answer provided by https://www.AssignmentExpert.com

