Answer on Question \#64619, Physics / Other

A wave in a spring, stretched to a length of 6.85 m , travels at a speed of $4.75 \mathrm{~m} / \mathrm{s}$. How many nodes are located along the length of the spring if the frequency of the standing wave is 3.12 Hz ?

Solution:

First we find wavelength

$$
\lambda=\frac{v}{f}=\frac{4.75 \mathrm{~m} / \mathrm{s}}{3.12 \mathrm{~Hz}}=1.522 \mathrm{~m}
$$

The nodes are produced at locations

$$
x=\frac{\lambda}{2}, \lambda, \frac{3 \lambda}{2}, \ldots, \frac{n \lambda}{2} \quad n=0,1,2, \ldots
$$

Then find number of halfwaves on the spring

$$
n=\frac{2 L}{\lambda}=\frac{2 \times 6.85 \mathrm{~m}}{1.522 \mathrm{~m}}=9 \text { halfwaves }
$$

Finally, there is a node at the beginning followed by one node per each half wavelength, so the number of nodes is

$$
k=1+n=1+9=10 \text { nodes }
$$

Answer: 10 nodes
Answer provided by https://www.AssignmentExpert.com

