Answer on question \#64479, Physics / Mechanics | Relativity

Question A racing car, moving with constant acceleration along a straight stretch of track, passes a fixed marker A with speed of $72 \mathrm{~km} / \mathrm{h}$. Two seconds later it passes a second fixed marker B. Given that the distance AB is 45 meters, find the acceleration of the car.

A third marker C is situated near the end of this section of track. Given that the speed of the car as it passes C is $216 \mathrm{~km} / \mathrm{h}$, find the time taken by the car to travel from A to C.

Solution Lets write down equation of motion for these 2 sec :

$$
s=v_{0} t+a t^{2} / 2
$$

We know that $v_{0}=72 k m / h=20 \mathrm{~m} / \mathrm{s}, s=45 \mathrm{~m}$ and $t=2 \mathrm{sec}$. So we can find acceleration:

$$
a=2 \frac{s-v_{0} t}{t^{2}}=2 \frac{45-20 \cdot 2}{2^{2}}=2.5 \mathrm{~m} / \mathrm{s}^{2}
$$

Time that is needed to travel to C can be found as

$$
\begin{gathered}
v=v_{0}+a t \\
t=\frac{v-v_{0}}{a}=\frac{60-20}{2.5}=16 \mathrm{~s}
\end{gathered}
$$

