## Answer on Question \#64473-Physics-Other

1. Radio waves from an FM station have a frequency of 103.1 MHz . If the waves travel with a speed of 3.00 $x 108 \mathrm{~m} / \mathrm{s}$, what is the wavelength?

## Solution

The wavelength is

$$
\lambda=\frac{v}{f}=\frac{3.00 \cdot 10^{8}}{103.1 \cdot 10^{6}}=2.91 \mathrm{~m}
$$

2. A spring ( $k=790 \mathrm{~N} / \mathrm{m}$ ) has a length of 48 cm when zero net force is applied to it. What will its length be when 230 N of force is applied to stretch it?

## Solution

$$
\begin{gathered}
l^{\prime}=l+\Delta l \\
\Delta l=\frac{F}{k} \\
l^{\prime}=l+\frac{F}{k}=0.48+\frac{230}{790}=0.77 \mathrm{~m}=77 \mathrm{~cm}
\end{gathered}
$$

3. If 320 J of work is done on a spring with a spring constant of $720 \mathrm{~N} / \mathrm{m}$, how far will it stretch?

## Solution

$$
\begin{gathered}
W=\frac{k x^{2}}{2} \\
x=\sqrt{\frac{2 W}{k}}=\sqrt{\frac{2 \cdot 320}{720}}=0.943 \mathrm{~m}
\end{gathered}
$$

4. A pendulum clock is taken to another planet's moon ( $g=3.6 \mathrm{~N} / \mathrm{kg}$ ). How long must the pendulum be in order for the clock to continue keeping accurate time (1 second/cycle)?

## Solution

$$
\begin{gathered}
T=2 \pi \sqrt{\frac{g}{l}} . \\
\sqrt{\frac{g^{\prime}}{l^{\prime}}}=\sqrt{\frac{g}{l}}
\end{gathered}
$$

$$
\begin{gathered}
T=2 \pi \sqrt{\frac{g^{\prime}}{l^{\prime}}} \\
l^{\prime}=g^{\prime}\left(\frac{2 \pi}{T}\right)^{2}=3.6\left(\frac{2 \pi}{1}\right)^{2}=142 \mathrm{~m}
\end{gathered}
$$

5. How much work must be done on a spring $(k=730 \mathrm{~N} / \mathrm{m})$ to stretch is by 2.5 m ?

## Solution

$$
W=\frac{k x^{2}}{2}=730 \frac{(2.5)^{2}}{2}=2281.25 \mathrm{~J}
$$

6. A string vibrates with a standing wave that has a wavelength of 1.2 m . What is the length of the string?

## Solution

$$
L=\frac{1}{2} \lambda=\frac{1.2}{2}=0.6 \mathrm{~m}
$$

