Answer on Question #64436, Physics / Mechanics | Relativity

- 1. Show that the basis of dimensional analysis that the following relations are correct.
- a). v2-u2 = 2aS, Where (u) is the initial velocity, (v) is final velocity, (a) is acceleration of the body and (S) is the distance moved.
- b). p = 3g/4rG, where (p) is the density of earth, (G) is the gravitational constant, (r) is the radius of the earth and (g) is acceleration due to gravity.

Solution:

a)
$$v^2-u^2 = 2aS$$

dim $v=L\times T^{-1}$ (1)
Of (1) \Rightarrow dim $v^2=L^2\times T^{-2}$ (2)
dim $u=L\times T^{-1}$ (3)
Of (3) \Rightarrow dim $u^2=L^2\times T^{-2}$ (4)
Of (2) and (4) \Rightarrow dim $v^2-u^2=L^2\times T^{-2}$ (5)
dim $a=L\times T^{-2}$ (6)
dim $S=L$ (7)
Of (6) and (7) \Rightarrow dim $2aS=L\times T^{-2}\times L=L^2\times T^{-2}$ (8)
Of (5) and (8) \Rightarrow dim $v^2-u^2=$ dim $2aS$
b) $\rho=3g/4rG$
dim $\rho=M\times L^{-3}$ (1)
dim $g=L\times T^{-2}$ (2)
dim $r=L$ (3)
dim $G=M\times L\times T^{-2}\times L^2\times M^{-2}=L^3\times T^{-2}\times M^{-1}$ (4)
Of (2), (3), (4) \Rightarrow dim $3g/4rG=L\times T^{-2}/L\times L^3\times T^{-2}\times M^{-1}=M\times L^{-3}$ (5)
Of (1) and (5) \Rightarrow dim $\rho=$ edim $3g/4rG$

Answer provided by https://www.AssignmentExpert.com