Answer on Question \#64436, Physics / Mechanics | Relativity

1. Show that the basis of dimensional analysis that the following relations are correct.
a). $\mathrm{v} 2-\mathrm{u} 2=2 \mathrm{aS}$, Where (u) is the initial velocity, (v) is final velocity, (a) is acceleration of the body and (S) is the distance moved.
b). $p=3 g / 4 r G$, where (p) is the density of earth, (G) is the gravitational constant, (r) is the radius of the earth and (g) is acceleration due to gravity.

Solution:

a) $v^{2}-u^{2}=2 a S$
$\operatorname{dim} v=L \times T^{-1}(1)$
Of (1) $\Rightarrow \operatorname{dim} v^{2}=L^{2} \times T^{-2}(2)$
$\operatorname{dim} u=L \times T^{-1}(3)$
Of (3) $\Rightarrow \operatorname{dim} u^{2}=L^{2} \times T^{-2}(4)$
Of (2) and (4) $\Rightarrow \operatorname{dim} v^{2}-u^{2}=L^{2} \times T^{-2}(5)$
$\operatorname{dim} a=L \times T^{-2}(6)$
$\operatorname{dim} S=L(7)$
Of (6) and (7) $\Rightarrow \operatorname{dim} 2 \mathrm{aS}=\mathrm{L} \times \mathrm{T}^{-2} \times \mathrm{L}=\mathrm{L}^{2} \times \mathrm{T}^{-2}$ (8)
Of (5) and (8) $\Rightarrow \operatorname{dim} v^{2}-u^{2}=\operatorname{dim} 2 a S$
b) $\rho=3 \mathrm{~g} / 4 \mathrm{rG}$
$\operatorname{dim} \rho=M \times L^{-3}(1)$
$\operatorname{dim} \mathrm{g}=\mathrm{L} \times \mathrm{T}^{-2}(2)$
$\operatorname{dim} r=L(3)$
$\operatorname{dim} G=M \times L \times T^{-2} \times L^{2} \times M^{-2}=L^{3} \times T^{-2} \times M^{-1}(4)$
Of (2), (3), (4) $\Rightarrow \operatorname{dim} 3 \mathrm{~g} / 4 \mathrm{rG}=\mathrm{L} \times \mathrm{T}^{-2} / \mathrm{L} \times \mathrm{L}^{3} \times \mathrm{T}^{-2} \times \mathrm{M}^{-1}=\mathrm{M} \times \mathrm{L}^{-3}(5)$
Of (1) and (5) $\Rightarrow \operatorname{dim} \rho=\operatorname{dim} 3 \mathrm{~g} / 4 \mathrm{rG}$
Answer provided by https://www.AssignmentExpert.com

