Answer on Question \#64422-Physics-Molecular Physics-Thermodynamics

A ship sails 50 km due north and then sails $85 \mathrm{~km}, 45$ degrees north east. How far the ship from its starting point and what is its exact location? Use the graphical method and analytical method

Solution

1. Analytical method.

$$
\begin{gathered}
\vec{A}=(0,50) m \\
\vec{B}=(85 \cos 45,85 \sin 45)=\left(\frac{85}{\sqrt{2}}, \frac{85}{\sqrt{2}}\right) m . \\
\vec{A}+\vec{B}=\left(\frac{85}{\sqrt{2}}, 50+\frac{85}{\sqrt{2}}\right) m .
\end{gathered}
$$

The distance is

$$
d=\sqrt{\left(\frac{85}{\sqrt{2}}\right)^{2}+\left(50+\frac{85}{\sqrt{2}}\right)^{2}}=125 \mathrm{~m}
$$

The direction is

$$
\theta=\tan ^{-1} \frac{50+\frac{85}{\sqrt{2}}}{\frac{85}{\sqrt{2}}}=61^{\circ} \text { north of east. }
$$

2. Graphical method.

Answer provided by www.AssignmentExpert.com

