Answer on Question \#64418, Physics / Mechanics | Relativity

I used a 7.5 kg wheelbarrow to carry a 35 kg rock. If the rock is placed with its centre of gravity 0.2 m in front of the wheel and the centre of gravity of the wheelbarrow is 0.1 m in front of the wheel what force must be applied to the handle 0.6 m from the wheel to keep the wheelbarrow horizontal?

Solution:

$M_{1}=m_{1} \times g \times d_{1}=7.5 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times 0.1 \mathrm{~m}=7.35 \mathrm{Nm}$
$\mathrm{M}_{2}=\mathrm{m}_{2} \times \mathrm{gxd}_{2}=35 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times 0.2 \mathrm{~m}=68.6 \mathrm{Nm}$
$\sum \mathrm{M}=\mathrm{M}_{1}+\mathrm{M}_{2}=7.35 \mathrm{Nm}+68.6 \mathrm{Nm}=75.95 \mathrm{Nm}$
The algebraic sum of points is zero or moment of force, rotating it clockwise moment equal force that rotates counterclockwise
$\mathrm{M}=\mathrm{Fd}=\mathrm{F}=\mathrm{M} / \mathrm{d}=75.95 \mathrm{Nm} / 0.6 \mathrm{~m}=126.6 \mathrm{~N}$
Answer: $\mathbf{1 2 6 . 6} \mathbf{N}$

