Answer on Question \#64417-Physics-Mechanics-Relativity

A mass of $m=10 \mathrm{~kg}$ hangs from one end of a $l=1 \mathrm{~m}$ long light rod that is pivoted $d=0.3 \mathrm{~m}$ from that end.
(a) What force must be applied at the $s=0.6 \mathrm{~m}$ mark to balance the rod?
(b) If force of $F_{1}=20 \mathrm{~N}$ is hung from the $d_{1}=0.5 \mathrm{~m}$ mark what force must be hung from the $l=1 \mathrm{~m}$ mark to balance the rod?

Solution

(a) Taking moments about the pivot:

$$
\begin{gathered}
W d=F(s-d) \\
F=W \frac{d}{(s-d)}=m g \frac{d}{(s-d)}=10 \cdot 10 \frac{0.3}{(0.6-0.3)}=100 \mathrm{~N} .
\end{gathered}
$$

(b) Taking moments about the pivot:

$$
\begin{gathered}
W d=F_{1}\left(d_{1}-d\right)+F(l-d) \\
F=\frac{W d-F_{1}\left(d_{1}-d\right)}{l-d}=\frac{10 \cdot 10 \cdot 0.3-20(0.5-0.3)}{1-0.3}=37 \mathrm{~N} .
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

