Question \#64399, Physics / Mechanics | Relativity

A bullet of mass 0.02 kg is moving with a speed $10 \mathrm{~m} / \mathrm{s}$. It can penetrate 10 cm if a given target before coming to rest. If the same target were only 6 cm thick, what will be the speed and kinetic energy of the bullet, when it comes out.

Solution

The kinetic energy of the bullet right before it hits the target:
$E_{k}=\frac{m v^{2}}{2} ;$
$E_{k_{-} i}=\frac{0.02 \times 10^{2}}{2}=1 \mathrm{~J}$
The change in kinetic energy is equal to the work done by resistive forces.
$E_{k_{-} i}=W=F d ;$
$F=\frac{E_{k_{-} i}}{d} ;$
$F=\frac{1}{0.1}=10 \mathrm{~N}$
The kinetic energy on the bullet when it comes out:
$E_{k_{-} f}=E_{k_{-} i}-F d ;$
$E_{k}=1-10 \times 0.06=0.4 \mathrm{~J}$
The final speed of the bullet:
$v=\sqrt{\frac{2 E_{k}}{m}} ;$
$v_{f}=\sqrt{\frac{2 \times 0.4}{0.02}}=6.32 \mathrm{~m} / \mathrm{s}$.
Answer: $6.32 \mathrm{~m} / \mathrm{s} ; 0.4 \mathrm{~J}$.

