Answer on question \#64394, Physics / Mechanics | Relativity

Question A rifle is fired up at an angle of 5.5 degrees above horizontal. If the inital velocity of the bullet is $570 \mathrm{~m} / \mathrm{s}$, what will be it's velocity 2.5 s after firing?

Solution The horizontal initial velocity is

$$
v_{h}=v \cdot \cos \alpha=570 \cdot \cos 5.5^{\circ} \approx 567.4 \mathrm{~m} / \mathrm{s}
$$

The vertical initial velocity is

$$
v_{v}=v \cdot \sin \alpha=570 \cdot \sin 5.5^{\circ} \approx 54.6 \mathrm{~m} / \mathrm{s}
$$

The horizontal velocity will not change. The verical on will change in the following way due to gravity:

$$
v_{2 v}=v_{v}-g t^{2} / 2=54.6-9.8 \cdot 2.5^{2} / 2 \approx 24 \mathrm{~m} / \mathrm{s}
$$

So, final velocity after 2.5 seconds will be

$$
v_{f}=\sqrt{v_{h}^{2}+v_{2 v}^{2}}=\sqrt{567.4^{2}+24^{2}} \approx 567.9 \mathrm{~m} / \mathrm{s}
$$

