Answer on Question \#64345-Physics-Mechanics-Relativity

A bead of mass m is attached to one end of a spring of natural length $\sqrt{3} R$ and spring constant
$k=\frac{(\sqrt{3}+1) m g}{R}$. The other end of the spring is fixed at point A on a smooth fixed vertical ring of radius R as shown in the figure. What is the normal reaction at B just after the bead is released?

Solution

$$
\begin{gathered}
x=2 R \cos 60=2 R \frac{1}{2}=R . \\
l-x=\sqrt{3} R-R=(\sqrt{3}-1) R
\end{gathered}
$$

The spring force is

$$
F_{s}=k(l-x)=\frac{(\sqrt{3}+1) m g}{R}(\sqrt{3}-1) R=2 m g
$$

The weight is

$$
W=m g .
$$

The projection of spring force on the normal is

$$
-2 m g \cos 60=2 m g \frac{1}{2}=-m g
$$

The projection of weight on the normal is

$$
m g \sin 60=m g \frac{\sqrt{3}}{2}
$$

The sum of all forces in the normal direction must be zero:

$$
\begin{gathered}
N-m g+m g \frac{\sqrt{3}}{2}=0 \\
N=\left(1-\frac{\sqrt{3}}{2}\right) m g
\end{gathered}
$$

Answer: $\left(1-\frac{\sqrt{3}}{2}\right) \boldsymbol{m g}$.

