Answer on question \#64336, Physics / Mechanics - Relativity

Question the position of a 0.30 kg object attached to a spring is described by $\mathrm{x}=(0.25 \mathrm{~m}) \cos (0.4 \mathrm{t})$. find:
A.) the amplitude of the motion
B.) the spring constant
C.) the position at $\mathrm{t}=0.30 \mathrm{~s}$
D.) the object speed at $t=0.30 \mathrm{~s}$

Solution So the equation of motion is

$$
x(t)=A \cos w t=0.25 \cos (0.4 \pi t)
$$

A. The amplitude is

$$
A=0.25 \mathrm{~m}
$$

B. Spring constant

$$
k=m w^{2}=0.3 \cdot(0.4 \pi)^{2} \approx 0.473 \mathrm{~N} / \mathrm{m}
$$

C. Position at $\mathrm{t}=0.3$:

$$
x(0.3)=0.25 \cos (0.4 \pi \cdot 0.3) \approx 0.232 m
$$

D.Speed is

$$
\begin{gathered}
v(t)=\dot{x}(t)=-A w \sin w t=-0.1 \pi \sin (0.4 \pi t) \\
v(0.3)=-0.1 \pi \sin (0.4 \pi \cdot 0.3) \approx-0.116 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

