Answer on Question 64327, Physics, Other

Question:

A car is moving at $30 \mathrm{~km} / \mathrm{h}$ when it accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$ for 3.6 seconds. What is the car's final speed?

Solution:

Let's first convert km / h to m / s :

$$
v_{i}=30 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \cdot \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=8.3 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Then, we can find the car's final speed from the kinematic equation:

$$
v_{f}=v_{i}+a t
$$

here, v_{i} is the car's initial speed, v_{f} is the car's final speed, a is the acceleration of the car, t is the time during which the car is accelerates.

Finally, we get:

$$
\begin{gathered}
v_{f}=v_{i}+a t=8.3 \frac{\mathrm{~m}}{\mathrm{~s}}+2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 3.6 \mathrm{~s}=15.5 \frac{\mathrm{~m}}{\mathrm{~s}}, \\
v_{f}=15.5 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \cdot \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=55.8 \frac{\mathrm{~km}}{\mathrm{~h}} \approx 56 \frac{\mathrm{~km}}{\mathrm{~h}} .
\end{gathered}
$$

Answer:

$v_{f}=15.5 \frac{\mathrm{~m}}{\mathrm{~s}}=56 \frac{\mathrm{~km}}{\mathrm{~h}}$.

