Answer on Question \#64293-Physics-Other

A period of disk of radius 10.2 cm executing small oscillation about a pivot at its rim is measured to be 0.784 s . find the value of g . the acceleration due to gravity at that location?

Solution

For a physical pendulum the period is

$$
\begin{gathered}
T=2 \pi \sqrt{\frac{I}{m g h}} . \\
h=r . \\
I=I_{\text {disk }}+m h^{2}=\frac{m r^{2}}{2}+m r^{2}=\frac{3}{2} m r^{2} . \\
T=2 \pi \sqrt{\frac{3}{2} m r^{2}} \\
\left(\frac{T}{2 \pi}\right)^{2}=\frac{3 r}{2 g} \\
g=\frac{6 \pi^{2} r}{T^{2}}=\frac{6 \pi^{2}(0.102)}{(0.784)^{2}}=9.83 \frac{\mathrm{~m}}{s^{2}} .
\end{gathered}
$$

Answer: $9.83 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

Answer provided by https://www.AssignmentExpert.com

