Answer on Question 64278, Physics, Mechanics, Relativity

Question:

A proton moving with a speed of $1.0 \cdot 10^{7} \mathrm{~m} / \mathrm{s}$ passes through a 0.020 cm thick sheet of paper and emerges with a speed of $2.0 \cdot 10^{6} \mathrm{~m} / \mathrm{s}$. Assuming uniform deceleration, find retardation and time taken to pass through the paper?

Solution:

1) We can find the retardation of the proton from the kinematic equation:

$$
v_{f}^{2}=v_{i}^{2}+2 a s,
$$

here, v_{i} is the initial speed of the proton, v_{f} is the final speed of the proton (after it passes through the sheet of paper), a is the retardation of the proton, s is the distance that proton passes when moving through the sheet of paper.

Then, we can find the retardation of the proton:

$$
a=\frac{v_{f}^{2}-v_{i}^{2}}{2 s}=\frac{\left(2.0 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(1.0 \cdot 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 2 \cdot 10^{-4} \mathrm{~m}}=-2.4 \cdot 10^{17} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
$$

The sign minus indicates that the proton decelerates.
b) We can find the time taken to pass through the paper from another kinematic equation:

$$
\begin{gathered}
v_{f}=v_{i}+a t, \\
t=\frac{v_{f}-v_{i}}{a}=\frac{2.0 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}-1.0 \cdot 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}}{-2.4 \cdot 10^{17} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=3.3 \cdot 10^{-11} \mathrm{~s}
\end{gathered}
$$

Answer:

a) $a=-2.4 \cdot 10^{17} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
b) $t=3.3 \cdot 10^{-11} s$.

