Answer on Question 64275, Physics, Quantum Mechanics

Question:

A subatomic particle with an average lifetime of $2.1 \cdot 10^{-9} \mathrm{~s}$ at rest is placed into a particle accelerator, and is made to move at $2.6 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$. Calculate the average lifetime of the particle in the accelerator.

Solution:

We can find the average lifetime of the particle in the accelerator from the time dilation formula:

$$
\Delta t^{\prime}=\frac{\Delta t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{2.1 \cdot 10^{-9} \mathrm{~s}}{\sqrt{1-\frac{\left(2.6 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{\left(3.0 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}}}=4.2 \cdot 10^{-9} \mathrm{~s} .
$$

Answer:
$\Delta t^{\prime}=4.2 \cdot 10^{-9} \mathrm{~s}$.
Answer provided by https://www.AssignmentExpert.com

