Answer on Question 64231, Physics, Mechanics, Relativity

Question:

An object is traveling with a constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. How much distance will it travel in 3-rd second of its journey?

Solution:

We can find the distance traveled by the object from the kinematic equation:

$$
d=v_{0} t+\frac{1}{2} a t^{2}
$$

here, v_{0} is the initial velocity of the object, a is the acceleration of the object, t is time.
Since the object initially starts from rest ($v_{0}=0 \mathrm{~m} / \mathrm{s}$), we get:

$$
\begin{aligned}
d_{3}=\frac{1}{2} a t^{2} & =\frac{1}{2} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(3 \mathrm{~s})^{2}=45 \mathrm{~m} . \\
d_{2}=\frac{1}{2} a t^{2} & =\frac{1}{2} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(2 \mathrm{~s})^{2}=20 \mathrm{~m} . \\
\Delta d & =d_{3}-d_{2}=25 \mathrm{~m} .
\end{aligned}
$$

Answer:

$\Delta d=25 \mathrm{~m}$.

