Answer on Question \#64196, Physics / Molecular Physics | Thermodynamics

Question:

$18 \mathrm{~m}^{3}$ of air having a pressure of 4 bar absolute and a temperature of 90 degrees Celsius are to be compressed together with $28 \mathrm{~m}^{3}$ of air having a pressure of 3 bar absolute and a temperature of 15 degrees Celsius, in a vessel whose volume is $22 \mathrm{~m}^{3}$. What will be the temperature of the mixture if its pressure is 7 bar absolute?

Solution:

Let's treat air as an ideal gas. Then we may apply the ideal gas law:
$P V=\frac{m}{M} R T$,
where $\quad P$ is the pressure of air, V - volume, m - mass, M - molar mass,
R - gas constant ($8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$), and T - absolute temperature.
We may write three equations:
$P_{1} V_{1}=\frac{m_{1}}{M} R T_{1}$
$P_{2} V_{2}=\frac{m_{2}}{M} R T_{2}$
$P_{t o t} V_{t o t}=\frac{m_{1}+m_{2}}{M} R T_{\text {tot }}$
From equations (1) and (2) we may evaluate masses and substitute them into equation (3).
$m_{1}=\frac{P_{1} V_{1}}{R T_{1}} M, \quad m_{2}=\frac{P_{2} V_{2}}{R T_{2}} M, \quad P_{\text {tot }} V_{\text {tot }}=\frac{\frac{P_{1} V_{1}}{R T_{1}} M+\frac{P_{2} V_{2}}{R T_{2}} M}{M} R T_{\text {tot }}=\left(\frac{P_{1} V_{1}}{T_{1}}+\frac{P_{2} V_{2}}{T_{2}}\right) T_{\text {tot }}$
Therefore $T_{t o t}=\frac{P_{t o t} V_{t o t}}{\frac{P_{1} V_{1}}{T_{1}}+\frac{P_{2} V_{2}}{T_{2}}}$.
$P_{1}=4 \mathrm{bar}$ abs. $=4 \cdot 10^{5} \mathrm{~Pa}, P_{2}=3 \mathrm{bar} \mathrm{abs} .=3 \cdot 10^{5} \mathrm{~Pa}, P_{\text {tot }}=7 \mathrm{bar} \mathrm{abs} .=7 \cdot 10^{5} \mathrm{~Pa}$
$T_{1}=90^{\circ} \mathrm{C}=363 \mathrm{~K}, T_{2}=15^{\circ} \mathrm{C}=288 \mathrm{~K}$
$V_{1}=18 \mathrm{~m}^{3}, V_{2}=28 \mathrm{~m}^{3}, V_{t o t}=22 \mathrm{~m}^{3}$
$T_{\text {tot }}=\frac{7 \cdot 10^{5} \cdot 22}{\frac{4 \cdot 10^{5} \cdot 18}{363}+\frac{3 \cdot 10^{5} \cdot 28}{288}}=314 \mathrm{~K}=41^{\circ} \mathrm{C}$

Answer:

