Answer on Question \#64164, Physics / Mechanics | Relativity

Question:

Given an inclined plane with a slope of 1 in 4 measured along the plane. A metal block of mass 2 kg slides uniformly. What is the coefficient of friction?

Solution:

There are two forces acting on this block: its weight and the force of friction. Because the block slides uniformly we may conclude that its acceleration is zero and the magnitude of vector $\vec{F}_{f r}$ is equal to the magnitude of vector \vec{F}_{T} (tangential component of weight).

Let $-m$ be the mass of the block, k - coefficient of friction, g - acceleration of gravity.
$\left|\vec{F}_{f r}\right|=k\left|\vec{F}_{P}\right|=k m g \cos \alpha$
$\left|\vec{F}_{T}\right|=m g \sin \alpha$
$\left|\vec{F}_{f r}\right|=\left|\vec{F}_{T}\right| \quad \Rightarrow \quad k m g \cos \alpha=m g \sin \alpha \quad \Rightarrow \quad k=\tan \alpha$
The value of $\tan \alpha$ is equal to the slope of our plane, that is $\frac{1}{4}$. So, $=\frac{1}{4}=0.25$.

Answer:

0.25

Answer provided by https://www.AssignmentExpert.com

