Answer on Question \#64149-Physics-Classical Mechanics

An object is moving with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. It must slow down to a stop in .33 seconds and travel 4 m . Write a solution that applies a force to the object to satisfy the expected result.

Solution

If acceleration is constant:

$$
\begin{gathered}
a=\frac{v_{i}}{t}=\frac{20}{0.33}=60.6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
d=v_{i} t-\frac{a t^{2}}{2}=20(0.33)-\frac{60.6(0.33)^{2}}{2}=3.3 \mathrm{~m} \neq 4 \mathrm{~m}
\end{gathered}
$$

Thus,

$$
\begin{gathered}
d=v_{i} t-\int_{0}^{0.33} a(t) t d t \\
\int_{0}^{0.33} a(t) t d t=v_{i} t-d=20(0.33)-4=2.6 \mathrm{~m}
\end{gathered}
$$

Let

$$
a(t)=a_{0}(1-\alpha t)
$$

where $a_{0}=60.6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
Therefore,

$$
\int_{0}^{0.33} a_{0}(1-\alpha t) t d t=\frac{60.6(0.33)^{2}}{2}-\alpha \frac{0.33^{3}}{3}=2.6
$$

So,

$$
\alpha=58.4 \frac{\mathrm{~m}}{\mathrm{~s}^{3}} .
$$

The deceleration is

$$
a(t)=a_{0}(1-\alpha t)=a(t)=60.6(1-58.4 t)=(60.6-3540 t) \frac{m}{s^{2}}
$$

The applied force:

$$
F=m a=m(60.6-3540 t) N
$$

Answer provided by https://www.AssignmentExpert.com

