

Answer on Question #64149-Physics-Classical Mechanics

An object is moving with an initial velocity of 20m/s. It must slow down to a stop in .33 seconds and travel 4m. Write a solution that applies a force to the object to satisfy the expected result.

Solution

If acceleration is constant:

$$a = \frac{v_i}{t} = \frac{20}{0.33} = 60.6 \frac{m}{s^2}$$

$$d = v_i t - \frac{at^2}{2} = 20(0.33) - \frac{60.6(0.33)^2}{2} = 3.3 \text{ m} \neq 4 \text{ m.}$$

Thus,

$$d = v_i t - \int_0^{0.33} a(t) t dt$$
$$\int_0^{0.33} a(t) t dt = v_i t - d = 20(0.33) - 4 = 2.6 \text{ m}$$

Let

$$a(t) = a_0(1 - \alpha t),$$

$$\text{where } a_0 = 60.6 \frac{m}{s^2}.$$

Therefore,

$$\int_0^{0.33} a_0(1 - \alpha t) t dt = \frac{60.6(0.33)^2}{2} - \alpha \frac{0.33^3}{3} = 2.6$$

So,

$$\alpha = 58.4 \frac{m}{s^3}.$$

The deceleration is

$$a(t) = a_0(1 - \alpha t) = a(t) = 60.6(1 - 58.4t) = (60.6 - 3540t) \frac{m}{s^2}.$$

The applied force:

$$F = ma = m(60.6 - 3540t) N.$$

Answer provided by <https://www.AssignmentExpert.com>