Answer on Question \#64087, Physics / Mechanics | Relativity

7. An $80-\mathrm{kg}$ man and his car are suddenly accelerated from rest to a speed of $5 \mathrm{~m} / \mathrm{s}$ as a result of a rear-end collision. Assuming the time taken to be 0.3 s , find:
a) the impulse on the man and
b) the average force exerted on him by the back seat of his car.

Solution:

a) $p=m v=80 \mathrm{~kg} \times 5 \mathrm{~m} / \mathrm{s}=400 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
b) $\mathrm{F}=\mathrm{p} / \mathrm{t}=400 \mathrm{~kg} \mathrm{~m} / \mathrm{s} / 0.3 \mathrm{~s}=1333 \mathrm{~N}$

Answer: a) 400 kg m/s; b) 1333 N

8. An airplane propeller is rotating at $1900 \mathrm{rev} / \mathrm{min}$.
a. Compute the propeller's angular velocity in rad/s.
b. How long in seconds does it take for the propeller to turn through 30.0 degrees?

Solution:

a) $\omega=2 \pi f=2 \times 3.14 \times(1900 \mathrm{rev} / \mathrm{min} / 60)=198.8 \mathrm{rad} / \mathrm{s}$
b) $\phi=\omega t ; t=\phi / \omega=30^{\circ} \times \pi / 180^{\circ} \times 198.8 \mathrm{rad} / \mathrm{s}=0.0025 \mathrm{~s}$

Answer: a) $\mathbf{1 9 8 . 8 ~ r a d / s ; ~ b) ~} \mathbf{0 . 0 0 2 5 ~ s}$

9. A disk with a $1.0-\mathrm{m}$ radius reaches a maximum angular speed of $18 \mathrm{rad} / \mathrm{s}$ before it stops 30 revolutions after attaining the maximum speed. How long did it take the disk to stop?

Solution:

$t=d / v$
$v=\omega R$
$d=2 \pi R n$
$\mathrm{t}=2 \pi \mathrm{Rn} / \omega \mathrm{R}=2 \times 3.14 \times 30 / 18 \mathrm{rad} / \mathrm{s}=10.5 \mathrm{~s}$
Answer: 10.5 s
Answer provided by https://www.AssignmentExpert.com

