

Answer on Question #64087, Physics / Mechanics | Relativity

7. An 80-kg man and his car are suddenly accelerated from rest to a speed of 5 m/s as a result of a rear-end collision. Assuming the time taken to be 0.3s, find:

- a) the impulse on the man and
- b) the average force exerted on him by the back seat of his car.

Solution:

a) $p = mv = 80 \text{ kg} \times 5 \text{ m/s} = 400 \text{ kg m/s}$

b) $F = p/t = 400 \text{ kg m/s} / 0.3 \text{ s} = 1333 \text{ N}$

Answer: a) 400 kg m/s; b) 1333 N

8. An airplane propeller is rotating at 1900 rev/min.

- a. Compute the propeller's angular velocity in rad/s.
- b. How long in seconds does it take for the propeller to turn through 30.0 degrees?

Solution:

a) $\omega = 2\pi f = 2 \times 3.14 \times (1900 \text{ rev/min} / 60) = 198.8 \text{ rad/s}$

b) $\phi = \omega t; t = \phi / \omega = 30^\circ \times \pi / 180^\circ \times 198.8 \text{ rad/s} = 0.0025 \text{ s}$

Answer: a) 198.8 rad/s; b) 0.0025 s

9. A disk with a 1.0-m radius reaches a maximum angular speed of 18 rad/s before it stops 30 revolutions after attaining the maximum speed. How long did it take the disk to stop?

Solution:

$$t = d/v$$

$$v = \omega R$$

$$d = 2\pi R n$$

$$t = 2\pi R n / \omega R = 2 \times 3.14 \times 30 / 18 \text{ rad/s} = 10.5 \text{ s}$$

Answer: 10.5 s

Answer provided by <https://www.AssignmentExpert.com>