## Answer on Question \#64086-Physics-Mechanics-Relativity

4. A 200 g mass is attached to a spring of spring constant k . The spring is compressed 15 cm from its equilibrium value. When released the mass reaches a speed of $5 \mathrm{~m} / \mathrm{s}$. What is the spring constant (in $\mathrm{N} / \mathrm{m}$ )?

## Solution

From the conservation of energy:

$$
\begin{gathered}
\frac{m v^{2}}{2}=\frac{k x^{2}}{2} \\
k=\frac{m v^{2}}{x^{2}}=0.2\left(\frac{5}{0.15}\right)^{2}=222 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{gathered}
$$

5. A $34-\mathrm{g}$ bullet traveling at $120 \mathrm{~m} / \mathrm{s}$ embeds itself in a wooden block on a smooth surface. The block then slides toward a spring and collides with it. The block compresses the spring ( $k=100 \mathrm{~N} / \mathrm{m}$ ) a maximum of 1.25 cm . Calculate the mass of the block of wood.

## Solution

The law of conservation of momentum:

$$
\begin{aligned}
m v & =(m+M) V \\
V & =v \frac{m}{m+M}
\end{aligned}
$$

From the conservation of energy:

$$
\begin{gathered}
\frac{(m+M) V^{2}}{2}=\frac{k x^{2}}{2} \\
\frac{m^{2} v^{2}}{2(m+M)}=\frac{k x^{2}}{2} \\
M=\frac{m^{2} v^{2}}{k x^{2}}-m=0.034\left(\frac{0.034}{100}\left(\frac{120}{0.0125}\right)^{2}-1\right)=1065 \mathrm{~kg}
\end{gathered}
$$

6. If a force of 300 N is exerted upon a 60 kg mass for 3 seconds, how much impulse does the mass experience?

## Solution

The impulse is

$$
I=F t=300 \cdot 3=900 \mathrm{Ns} .
$$

Answer provided by https://www.AssignmentExpert.com

