

Answer on Question #64028-Physics-Atomic and Nuclear Physics

The surface of Lithium of work function ϕ is illuminated by electromagnetic radiation whose electric field component varies with time as $a=(1+\cos(\omega)t)\cos(\omega_0)t$. The maximum kinetic energy of photo electron liberated from surface is?

Solution

$$a = (1 + \cos(\omega)t)\cos(\omega_0)t = \cos(\omega_0)t + \cos(\omega)t \cos(\omega_0)t$$

Using trigonometric identity:

$$\cos(\omega)t \cos(\omega_0) = \frac{1}{2}(\cos(\omega + \omega_0)t + \cos(\omega - \omega_0)t).$$

Thus,

$$a = \cos(\omega_0)t + \frac{1}{2}\cos(\omega + \omega_0)t + \frac{1}{2}\cos(\omega - \omega_0)t$$

The maximum angular frequency is $(\omega + \omega_0)$.

The maximum frequency of electromagnetic radiation is

$$f = \frac{(\omega + \omega_0)}{2\pi}.$$

The maximum kinetic energy of photo electron liberated from surface is

$$K = h \frac{(\omega + \omega_0)}{2\pi} - \phi = \hbar(\omega + \omega_0) - \phi.$$

Answer provided by <https://www.AssignmentExpert.com>