Answer on Question \#64022, Physics / Molecular Physics | Thermodynamics

Question:

How many kilograms of water can be evaporated at 100 degrees Celsius by the combustion of 470 litres of fuel oil whose heat of combustion is $37 \mathrm{MJ} /$ Litre?

Solution:

First, let's determine the heat generated during fuel's combustion:
$Q_{c}=V \cdot H_{c}$, where V - fuel's volume, and H_{c} - fuel's heat of combustion.
Now we must calculate the energy required for evaporation.
$Q_{e}=m \cdot H_{V}$, where m is the mass of water, and H_{V} - water's heat of vaporization.
$Q_{e}=Q_{c}$ that is $m \cdot H_{V}=V \cdot H_{c}$, and therefore $m=\frac{V \cdot H_{c}}{H_{V}}$.
$V=470 L$
$H_{c}=37 \mathrm{MJ} / \mathrm{L}=3.7 \cdot 10^{7} \mathrm{~J} / \mathrm{L}$
$H_{V}=2260 \mathrm{KJ} / \mathrm{kg}=2.26 \cdot 10^{3} \mathrm{~J} / \mathrm{kg}$
Hence $m=\frac{470 \cdot 3.7 \cdot 10^{7}}{2.26 \cdot 10^{3}}=7.69 \cdot 10^{6} \mathrm{~kg}$

Answer:

$$
7.69 \cdot 10^{6} \mathrm{~kg}
$$

Answer provided by https://www.AssignmentExpert.com

