Answer on question \#64018, Physics

Question A particle starting with a velocity of $8 \mathrm{~m} / \mathrm{s}$ moves so that it's acceleration is always proportional to the distance travelled. If the velocity is $10 \mathrm{~m} / \mathrm{s}$ when it travels 6 m ,find the velocity when it travels 15 m .

Solution There is to little data given to solve this problem. I am going to show it here.
First of all, let find equation of motion for this particle. We know, that acceleration is proportional to the distance. Hence,

$$
a(t)=k s(t)=k \int v(t) d t
$$

Now, let us write down definition of acceleration

$$
a=\frac{d v}{d t}
$$

Hence

$$
\frac{d v}{d t}=k \int v(t) d t
$$

By differentiating we have

$$
\frac{d^{2} v}{d t^{2}}=k v(t)
$$

The solution is

$$
v(t)=C_{1} e^{\sqrt{k} t}+C_{2}
$$

Now we have only two conditions, first one

$$
C_{1} e^{\sqrt{k} \cdot 0}+C_{2}=8
$$

that is equal to

$$
C_{1}+C_{2}=8
$$

and second

$$
\frac{C_{1}}{\sqrt{k}} e^{\sqrt{k} t_{1}}+C_{2} t_{1}=6, \quad C_{1} e^{\sqrt{k} t_{1}}+C_{2}=10
$$

Having 4 unknown variable (k, t, C_{1}, C_{2}) and only 3 equation it is impossible to find equation of motion for particle and hence, find is velocity at 15 m .

