Answer on Question \#64004, Physics / Mechanics | Relativity

Question:

A 1 kg object is moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$ to the right. It collides and sticks to a 2 kg object moving with a velocity of $3 \mathrm{~m} / \mathrm{s}$ in the same direction. How much kinetic energy is lost in the collision?

Solution:

According to the law of conservation of energy we may write that
$E_{k}^{1}+E_{k}^{2}=E_{k}^{12}+\Delta E$
$E_{k}^{1}=\frac{m_{1} v_{1}^{2}}{2}, \quad E_{k}^{2}=\frac{m_{2} v_{2}^{2}}{2}, \quad E_{k}^{12}=\frac{\left(m_{1}+m_{2}\right) v_{2}^{2}}{2}$
$\Delta E=E_{k}^{1}+E_{k}^{2}-E_{k}^{12}=\frac{m_{1} v_{1}^{2}+m_{2} v_{2}^{2}-\left(m_{1}+m_{2}\right) v_{2}^{2}}{2}$
$\Delta E=\frac{1 \cdot 6^{2}+2 \cdot 3^{2}-(1+2) \cdot 3^{2}}{2}=13.5 \mathrm{~J}$

Answer:

13.5 J

