Answer on Question \#64001, Physics / Mechanics | Relativity

Question:

A satellite with a mass of 2273 kg is at an altitude of 42873 km above the surface of Saturn. What is the strength of the gravitational force on the satellite?

Solution:

Gravitational force between two bodies may be calculated according to this formula:
$F_{g r}=G \frac{m_{1} m_{2}}{R^{2}}$,
where G - gravitational constant ($6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$),
m_{1} and m_{2} - masses of the bodies,
R - distance between its centres.
In our case we must take into account Saturn's radius (58232 km) and mass ($5.683 \cdot 10^{26} \mathrm{~kg}$).
So $R=42873+58232 \mathrm{~km}=101105 \mathrm{~km} \cong 1.011 \cdot 10^{8} \mathrm{~m}$
And thus $F_{g r}=6.674 \times 10^{-11} \frac{2273 \cdot 5.683 \cdot 10^{26}}{\left(1.011 \cdot 10^{8}\right)^{2}}=8434 \mathrm{~N}$

Answer:

https://www.AssignmentExpert.com

