Answer on Question \#63996-Physics-Mechanics-Relativity

A bead of mass m is located on a parabolic wire with its axis vertical and vertex directed towards downward as in figure and whose equation is $x^{2}=$ ay. If the coefficient of friction is μ, the highest distance above the x axis at which the particle will be in equilibrium is
(a) $\mu \mathrm{a}$ (b) $\mu^{2} \mathrm{a}$ (c) $1 / 4 \mu^{\wedge} 2 \mathrm{~g}$ (d) $1 / 2 \mu^{\wedge} \mathrm{g}$

Solution

Tangent at any x distance would be

$$
\tan \theta=y^{\prime}=\frac{2 x}{a}
$$

The friction is

$$
F_{f r}=\mu m g \cos \theta
$$

Balancing friction with $m g \sin (\theta)$ we get,

$$
\mu \cos \theta=\sin (\theta) \rightarrow \tan \theta=\mu
$$

So,

$$
\begin{aligned}
& \frac{2 x}{a}=\mu \\
& x=\frac{a \mu}{2}
\end{aligned}
$$

The highest point would be,

$$
y=\frac{\left(\frac{a \mu}{2}\right)^{2}}{a}=\frac{a \mu^{2}}{4} .
$$

Answer: $\frac{a \mu^{2}}{4}$.

