Answer on Question 63938, Physics, Other

Question:

Suppose that $\vec{a}=2 \hat{\imath}+\hat{\jmath}, \vec{b}=5 \hat{\imath}-4 \hat{\jmath}+\hat{k}, \vec{c}=3 \hat{\imath}+4 \hat{\jmath}+\hat{k}$. What is the magnitude of the vector $2 \vec{a}-\vec{b}+\vec{c}$?

Solution:

Let's first call the new vector $\vec{d}=2 \vec{a}-\vec{b}+\vec{c}$ and find it:

$$
\begin{aligned}
\vec{d}=2(2 \hat{\imath}+\hat{\jmath}) & -(5 \hat{\imath}-4 \hat{\jmath}+\hat{k})+(3 \hat{\imath}+4 \hat{\jmath}+\hat{k})= \\
& =(4 \hat{\imath}+2 \hat{\jmath}+0 \hat{k})-(5 \hat{\imath}-4 \hat{\jmath}+\hat{k})+(3 \hat{\imath}+4 \hat{\jmath}+\hat{k})= \\
& =(4 \hat{\imath}-5 \hat{\imath}+3 \hat{\imath})+(2 \hat{\jmath}+4 \hat{\jmath}+4 \hat{\jmath})+(0 \hat{k}-\hat{k}+\hat{k})=2 \hat{\imath}+10 \hat{\jmath}
\end{aligned}
$$

So, $\vec{d}=2 \hat{\imath}+10 \hat{\jmath}$.
The magnitude of the vector \vec{d} can be found using the Pythagorean theorem:
$|\vec{d}|=\sqrt{d_{x}^{2}+d_{y}^{2}}=\sqrt{2^{2}+10^{2}}=10.2$.

Answer:

$|\vec{d}|=10.2$.

