Answer on Question \#63924, Physics / Optics
A tank truck was filled with $45,725 \mathrm{~L}$ of gasoline in Peshawar where the temperature was $28.0^{\circ} \mathrm{C}$.
The gasoline was delivered to Swat where the temperature was $-12^{\circ} \mathrm{C}$. Volume expansion coefficient of Gasoline is $950 \times 10-6^{\circ} \mathrm{C}-1$. Find out the amount of gasoline delivered in litres. Infer the volume of the gasoline due to changed temperature

Find: V_{2} - ? $\Delta \mathrm{V}$ - ?

Given:

$\mathrm{V}_{1}=45.725 \mathrm{~L}$
$\mathrm{t}_{1}=28.0^{\circ} \mathrm{C}$
$\mathrm{t}_{2}=-12^{\circ} \mathrm{C}$
$\beta=950 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$

Solution:

Increase of the volume:
$V_{1}=V_{0}\left(1+\beta t_{1}\right)(1)$,
where V_{0} is volume of gasoline at temperature $t=0^{\circ} \mathrm{C}$,
V_{1} is volume of gasoline at temperature t_{1}
Of $(1) \Rightarrow V_{0}=\frac{V_{1}}{1+\beta t_{1}}(2)$
Of (2) $\Rightarrow \mathrm{V}_{0}=44.5403 \mathrm{~L}(3)$
Reduction of the volume:
$V_{2}=V_{0}\left(1+\beta t_{2}\right)(4)$,
where V_{0} is volume of gasoline at temperature $t=0^{\circ} \mathrm{C}$,
V_{2} is volume of gasoline at temperature t_{2}
(3) in (4): $V_{2}=44.0326 \mathrm{~L}$ (5)

Change of volume:
$\Delta V=V_{2}-V_{1}(6)$,
where $\mathrm{V}_{1}=45.725 \mathrm{~L}$
(5) in (6): $\Delta V=-1.6924 L$

Answer:

Find out the amount of gasoline delivered in litres
44.0326 L

Infer the volume of the gasoline due to changed temperature
decreased by 1.6924 L

