Answer on Question \#63909, Physics / Mechanics | Relativity

Question:

Find the resultant of three coplanar concurrent forces; F1 acting north and of magnitude 8 grams, F2 of magnitude 12 grams and acting southwest, F3 of magnitude 5 grams and acting southeast. Find the components of the resultant in an easterly and northerly direction.

Solution:

In Cartesian coordinate system X -axis is equivalent to easterly direction, and Y -axis - to northerly direction. We may decompose these three forces as
$\vec{F}_{1}=\left(F_{1}^{x} ; F_{1}^{y}\right)=(0 ; 8)$
$\vec{F}_{2}=\left(F_{2}^{x} ; F_{2}^{y}\right)=(-12 \cdot \sin \alpha ;-12 \cdot \cos \alpha)=\left(-12 \cdot \sin 45^{\circ} ;-12 \cdot \cos 45^{\circ}\right)$
$=\left(-12 \cdot \frac{\sqrt{2}}{2} ;-12 \cdot \frac{\sqrt{2}}{2}\right)=(-6 \sqrt{2} ;-6 \sqrt{2})$
$\vec{F}_{3}=\left(F_{3}^{x} ; F_{3}^{y}\right)=(5 \cdot \cos \alpha ;-5 \cdot \sin \alpha)=\left(5 \cdot \frac{\sqrt{2}}{2} ;-5 \cdot \frac{\sqrt{2}}{2}\right)=(2.5 \sqrt{2} ;-2.5 \sqrt{2})$
The components of the resultant force are:
$F_{\text {res }}^{x}=F_{1}^{x}+F_{2}^{x}+F_{3}^{\chi}=0-6 \sqrt{2}+2.5 \sqrt{2}=-3.5 \sqrt{2} \cong-4.95 \mathrm{grams}$
$F_{\text {res }}^{y}=F_{1}^{y}+F_{2}^{y}+F_{3}^{y}=8-6 \sqrt{2}-2.5 \sqrt{2}=8-8.5 \sqrt{2} \cong-4.02 \mathrm{grams}$

Answer:

$$
-4.95 \text { and }-4.02 \text { grams }
$$

