
Answer on Question #63907, Physics / Mechanics | Relativity

Question:

A 30-lb body is suspended by two cords, one making 53° with the vertical and the other making 30° with the horizontal. What are the tensions in the cord?

Solution:

The body is in equilibrium, so we may write that $\vec{T}_1 + \vec{T}_2 + \vec{W} = \vec{0}$. Now we decompose this vector equation into two scalar: $T_1^x = T_2^x$ and $T_1^y + T_2^y = W$. $T_1^x = T_1 \cdot \sin \alpha$, $T_2^x = T_2 \cdot \cos \beta$ and then $T_1 \cdot \sin \alpha = T_2 \cdot \cos \beta$...(1) $T_1^y = T_1 \cdot \cos \alpha$, $T_2^y = T_2 \cdot \sin \beta$ and $T_1 \cdot \cos \alpha + T_2 \cdot \sin \beta = W$...(2) From equation (1) $T_2 = T_1 \cdot \frac{\sin \alpha}{\cos \beta}$, and we substitute it into equation (2): $T_1 \cdot \cos \alpha + T_1 \cdot \frac{\sin \alpha}{\cos \beta} \cdot \sin \beta = W$ \blacktriangleright $T_1 \cdot (\cos \alpha + \sin \alpha \cdot \tan \beta) = W$ Finally $T_1 = \frac{W}{\cos \alpha + \sin \alpha \cdot \tan \beta} = \frac{mg}{\cos \alpha + \sin \alpha \cdot \tan \beta}$ and $T_2 = \frac{mg}{\cos \alpha + \sin \alpha \cdot \tan \beta} \cdot \frac{\sin \alpha}{\cos \beta} = \frac{mg \sin \alpha}{\cos \alpha \cos \beta + \sin \alpha \sin \beta} = \frac{mg \sin \alpha}{\cos(\alpha - \beta)}$. $m = 30lb = 30 \cdot 0.45kg = 13.5kg$ $g = 9.81m/s^2$, $\alpha = 53^\circ$, $\beta = 30^\circ$ $T_1 = \frac{13.5 \cdot 9.81}{\cos 53^\circ + \sin 53^\circ \cdot \tan 30^\circ} = 124.6N$ $T_2 = \frac{13.5 \cdot 9.81 \cdot \sin 53^\circ}{\cos(53^\circ - 30^\circ)} = 114.9N$

Answer: $T_1 = 124.6N T_2 = 114.9N$

https://www.AssignmentExpert.com