Answer on Question \#63869, Physics / Mechanics | Relativity

Derive moment of inertia of a solid sphere.

Answer:

Direct calculation of the moment of inertia of the body about the axis reduced to the evaluation of the integral

$$
J=\int r^{2} d m
$$

Where r is the distance of elemental mass $d m$ to the axis of rotation.
Calculate the moment of inertia of the sphere (in spherical coordinate's r, θ, φ)

$$
d m=\frac{m}{V} d V=\frac{m}{V} r^{2} \sin \theta \cdot d r \cdot d \theta \cdot d \varphi
$$

Here m is the mass of bullet, V is its volume.
Since

$$
\rho=r \sin \theta
$$

Then

$$
d J=\rho^{2} \cdot d m=\frac{m}{V} r^{4} \sin ^{3} \theta \cdot d r \cdot d \theta \cdot d \varphi
$$

So

$$
J=\frac{m}{V} \int_{0}^{R} r^{4} d r \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} \sin ^{3} \theta \cdot d \theta=\frac{m}{V} \cdot \frac{R^{5}}{5} \cdot 2 \pi \cdot \frac{4}{3}
$$

Since

$$
V=\frac{4}{3} \pi R^{3}
$$

Finally

$$
J=\frac{2}{5} m R^{2}
$$

https://www.AssignmentExpert.com

