Answer on Question \#63868, Physics / Mechanics | Relativity

Consider an O_{2} rotating in x , y plane about the z -axis the rotation passes through the center of molecule perpendicular to its length the mass of each O_{2} is $2.26 \times 10^{-26} \mathrm{~kg}$ and at room temperature the average separation between the 2 atoms.
a) Find the moment of inertia of the molecule about the z-axis.
b) If the angular Speed of the molecule about the z-axis is 4.6 pi $\times 10^{12} \mathrm{rad} / \mathrm{s}$. What is its rotational kinetic energy?

Solution:

a) The moment of inertia of the molecule:

$$
J=m\left(\frac{d}{2}\right)^{2}+m\left(\frac{d}{2}\right)^{2}=\frac{1}{2} m d^{2}
$$

Radius of an atom of oxygen $r=48 \times 10^{-12} \mathrm{~m}$
$\mathrm{d}=4 \times 48 \times 10^{-12} \mathrm{~m}=1.9210^{-10} \mathrm{~m}$
Then

$$
J=\frac{1}{2} \times 2.26 \cdot 10^{-26} \times\left(1.92 \cdot 10^{-10}\right)^{2}=4.17 \cdot 10^{-46} \mathrm{kgm}^{2}
$$

b) The kinetic energy of rotational motion of molecules:

$$
K E=\frac{1}{2} I \omega^{2}
$$

Then

$$
K E=\frac{1}{2} 4.17 \cdot 10^{-46} \times\left(4.6 \pi \cdot 10^{12}\right)^{2}=4.32 \cdot 10^{-20} J
$$

Answer: a) $4.17 \cdot 10^{-46} \mathrm{kgm}^{2}$; b) $4.32 \cdot 10^{-20} \mathrm{~J}$
https://www.AssignmentExpert.com

